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TEA genome-wide, whole brain approach to investigate genetic effects on neuroimaging phenotypes for
identifying quantitative trait loci is described. The Alzheimer's Disease Neuroimaging Initiative 1.5 T MRI and
genetic dataset was investigated using voxel-based morphometry (VBM) and FreeSurfer parcellation
followed by genome-wide association studies (GWAS). One hundred forty-two measures of grey matter
(GM) density, volume, and cortical thickness were extracted from baseline scans. GWAS, using PLINK, were
performed on each phenotype using quality-controlled genotype and scan data including 530,992 of 620,903
single nucleotide polymorphisms (SNPs) and 733 of 818 participants (175 AD, 354 amnestic mild cognitive
impairment, MCI, and 204 healthy controls, HC). Hierarchical clustering and heat maps were used to analyze
the GWAS results and associations are reported at two significance thresholds (pb10−7 and pb10−6). As
expected, SNPs in the APOE and TOMM40 genes were confirmed as markers strongly associated with
multiple brain regions. Other top SNPs were proximal to the EPHA4, TP63 and NXPH1 genes. Detailed image
analyses of rs6463843 (flanking NXPH1) revealed reduced global and regional GM density across diagnostic
groups in TT relative to GG homozygotes. Interaction analysis indicated that AD patients homozygous for the
T allele showed differential vulnerability to right hippocampal GM density loss. NXPH1 codes for a protein
implicated in promotion of adhesion between dendrites and axons, a key factor in synaptic integrity, the loss
of which is a hallmark of AD. A genome-wide, whole brain search strategy has the potential to reveal novel
candidate genes and loci warranting further investigation and replication.
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Introduction

Recent advances in brain imaging and high throughput genotyping
techniques enable new approaches to study the influence of genetic
variation on brain structure and function (Bearden et al., 2007;
Cannon et al., 2006; Glahn et al., 2007a; Meyer-Lindenberg and
Weinberger, 2006; Potkin et al., 2009a). The NIH Alzheimer's Disease
Neuroimaging Initiative (ADNI) is an ongoing 5-year public–private
partnership to test whether serial magnetic resonance imaging (MRI),
positron emission tomography (PET), genetic factors such as single
aging phenotypes for identifying quantitative trait
roimage.2010.01.042
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nucleotide polymorphisms (SNPs), other biological markers, and
clinical and neuropsychological assessments can be combined to
measure the progression of mild cognitive impairment (MCI) and
early Alzheimer's disease (AD). Given the availability of genome-
wide SNP data and repeat structural and functional neuroimaging
data as part of this initiative, ADNI provides a suitable data set for a
large scale imaging genetics study. Using the ADNI baseline MRI data
set, we present an imaging genetics framework that employs a whole
genome and whole brain strategy to systematically evaluate genetic
effects on brain imaging phenotypes for discovery of quantitative
trait loci (QTLs).

Imaging genetics is an emergent transdisciplinary research field
where the association between genetic variation and imaging
measures as quantitative traits (QTs) or continuous phenotypes is
evaluated. Imaging genetics studies have certain advantages over
traditional case control studies. QT association studies have been
shown to have increased statistical power and thus decreased sample
size requirements (Potkin et al., 2009b). In addition, imaging
phenotypes may be closer to the underlying biological etiology of
the disease making it easier to identify underlying genes (e.g., Potkin
et al., 2009a). Given these observations, the method proposed in this
paper focuses on identifying strong associations between regional
imaging phenotypes as QTs and SNP genotypes as QTLs and aims to
provide guidance for refined statistical modeling and follow-up
studies of candidate genes or loci.

SNPs and other types of polymorphisms in single genes such as
APOE have been related to neuroimaging measures in both healthy
controls and participants with brain disorders such as MCI and AD
(e.g., Lind et al., 2006; Wishart et al., 2006). However, the analytic
tools that relate a single gene to a few imaging measures are
insufficient to provide insight into the multiple mechanisms and
imaging manifestations of these complex diseases. Genome-wide
association studies (GWAS) are increasingly performed (Balding,
2006; Hirschhorn and Daly, 2005; Purcell et al., 2007; Zondervan and
Cardon, 2007), but effectively relating high throughput SNP data to
large scale image data remains a challenging task. As pointed out by
Glahn et al. (2007b), in imaging genetics, prior studies typically make
significant reduction in one or both data types in order to complete
analyses. For example, whole brain studies usually focus on a small
number of genetic variables (e.g., Ahmad et al., 2006; Brun et al., in
press; Filippinia et al., 2009; Nichols and Inkster, 2009; Pezawas et al.,
2004; Shen et al., 2007), while whole genome studies typically
examine a limited number of imaging variables (e.g., Baranzini et al.,
2009; Potkin et al., 2009a; Seshadri et al., 2007). This restriction of
target genotypes and/or phenotypes greatly limits our capacity to
identify important relationships.

To overcome this limitation, we present a whole genome and
whole brain search strategy for discovering imaging genetics associa-
tions to guide further detailed analyses. In addition, we present the
results from implementation of this technique, including the
identification of new genetic loci potentially involved in hippocampal
and global brain atrophy associated with MCI and AD. In the present
study, a detailed set of regions of interest (ROIs) extracted using
voxel-based morphometry (VBM) and FreeSurfer automated parcel-
lation defined 142 imaging phenotypes from across the brain
(Risacher et al., 2009). A separate GWAS analysis using PLINK
software (Purcell et al., 2007) was completed for each of these 142
imaging phenotypes. Hierarchical clustering and heat maps (Eisen
et al., 1998) were used to display and evaluate the association
patterns between top SNPs and top imaging phenotypes for multiple
statistical thresholds. Subsequent pattern analysis of these heat maps
not only confirmed prior findings (e.g., APOE and TOMM40 SNPs were
among the top ranked list) but also revealed novel QTLs which
warranted further analyses. Two types of refined imaging genetics
analysis were performed for one of the top SNPs (NXPH1, rs6463843),
including a VBM analysis assessing global grey matter (GM) density
Please cite this article as: Shen, L., et al., Whole genome association study
loci in MCI and AD: a study of the ADNI cohort, NeuroImage (2010), d
TE
D
PR

OO
F

and a regional analysis of target phenotypes. These focused analyses
resulted in interesting imaging genetics findings about the target SNP,
including an overall and regional decrease in GM density associated
with TT genotype relative to the GG genotype with an increased
vulnerability to this effect in AD participants.

Materials and methods

Sample

Data used in the preparation of this article were obtained from the
ADNI database (http://www.loni.ucla.edu/ADNI). The following data
from 818 ADNI participants were downloaded from the ADNI
database: all baseline 1.5 T MRI scans, the Illumina SNP genotyping
data, demographic information, APOE genotype, and baseline diag-
nosis information. Two participants had genotypic data but no
baseline MRI scans and were excluded from all analyses.

The ADNI was launched in 2004 by the National Institute on Aging
(NIA), the National Institute of Biomedical Imaging and Bioengineer-
ing (NIBIB), the Food and Drug Administration (FDA), private
pharmaceutical companies and non-profit organizations, as a $60
million, 5-year public–private partnership. The Principle Investigator
of this initiative is Michael W. Weiner, M.D., VA Medical Center and
University of California-San Francisco. ADNI is the result of efforts of
many co-investigators from a broad range of academic institutions
and private corporations. Presently, more than 800 participants, aged
55 to 90 years, have been recruited from over 50 sites across the
United States and Canada, including approximately 200 cognitively
normal older individuals (i.e., healthy controls or HCs) to be followed
for 3 years, 400 people with MCI to be followed for 3 years, and 200
people with early AD to be followed for 2 years. Baseline and
longitudinal imaging, including structural MRI scans collected on the
full sample and PIB and FDG PET imaging on a subset are collected
every 6–12 months. Additional baseline and longitudinal data
including other biological measures (i.e. cerebrospinal fluid (CSF)
markers, APOE and full-genome genotyping via blood sample) and
clinical assessments including neuropsychological testing and clinical
examinations are also collected as part of this study.Written informed
consent was obtained from all participants and the study was
conducted with prior institutional review board's approval. Further
information about ADNI can be found in the study of Jack et al. (2008)
and Mueller et al. (2005a,b) and at www.adni-info.org.

DNA isolation and SNP genotyping

Single nucleotide polymorphism (SNP) genotyping for more than
620,000 target SNPs as was completed on all ADNI participants using
the following protocol. Seven milliliters of blood was taken in EDTA
containing vacutainer tubes from all participants and genomic DNA
was extracted using the QIAamp DNA Blood Maxi Kit (Qiagen, Inc.,
Valencia, CA) following the manufacturer's protocol. Lymphoblastoid
cell lines were established by transforming B lymphocytes with
Epstein-Barr virus as described by Neitzel (1986). Genomic DNA
samples were analyzed on the Human610-Quad BeadChip (Illumina,
Inc. San Diego, CA) according to the manufacturer's protocols
(Infinium HD Assay; Super Protocol Guide; Rev. A, May 2008). Before
initiation of the assay, 50 ng of genomic DNA from each sample was
examined qualitatively on a 1% Tris–acetate–EDTA agarose gel to
check for degradation. Degraded DNA samples were excluded from
further analysis. Samples were quantitated in triplicate with Pico-
Green® reagent (Invitrogen, Carlsbad, CA) and diluted to 50 ng/μl in
Tris–EDTA buffer (10mMTris, 1mMEDTA, pH 8.0). DNA (200 ng)was
then denatured, neutralized, and amplified for 22 h at 37 °C (this is
termed the MSA1 plate). The MSA1 plate was fragmented with FMS
reagent (Illumina) at 37 °C for 1 h, precipitated with 2-propanol, and
incubated at 4 °C for 30 min. The resulting blue precipitate was
of brain-wide imaging phenotypes for identifying quantitative trait
oi:10.1016/j.neuroimage.2010.01.042
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resuspended in RA1 reagent (Illumina) at 48 °C for 1 h. Samples were
then denatured (95 °C for 20 min) and immediately hybridized onto
the BeadChips at 48 °C for 20 h. The BeadChips were washed and
subjected to single base extension and staining. Finally, the BeadChips
were coated with XC4 reagent (Illumina), dessicated, and imaged on
the BeadArray Reader (Illumina). The Illumina BeadStudio 3.2
software was used to generate SNP genotypes from bead intensity
data. All SNP genotypes are publicly available for download at the
ADNI website (http://www.loni.ucla.edu/ADNI).

MRI analysis and extraction of imaging phenotypes

Two widely employed automated MRI analysis techniques were
used to process and extract brain-wide target MRI imaging pheno-
types from all baseline scans of ADNI participants as previously
described (Risacher et al., 2009). First, voxel-based morphometry
(VBM; Ashburner and Friston, 2000; Good et al., 2001; Mechelli et al.,
2005) was performed to define global grey matter (GM) density maps
and extract local GM density values for 86 target regions (Table 1).
Second, automated parcellation via FreeSurfer V4 (http://surfer.nmr.
mgh.harvard.edu/) was conducted to define 56 volumetric and
cortical thickness values (Table 2). All included ADNI participants
had a minimum of two 1.5 T MP-RAGE scans at baseline following the
ADNI MRI protocol (Jack et al., 2008). Each raw scan was indepen-
dently processed using FreeSurfer and VBM.

For VBM analysis, SPM5 (http://www.fil.ion.ucl.ac.uk/spm/) was
used to create an unmodulated normalized GM density map
(1×1×1 mm voxel size, 10 mm FWHM Gaussian kernel for
smoothing) in the MNI space for each scan as previously described
(Risacher et al., 2009). A mean GM density map was created as an
UN
CO
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EC

Table 1
VBM phenotypes defined as mean GM densities of various regions of interest (ROIs). SPM5 w
was used to define ROIs in the MNI space. A total number of 43×2=86 phenotypes were ca
the left side and the other for the right side. For example, “LAmygdala” indicates themean GM
more than one MarsBaR ROI. For example, “RMeanLatTemporal” indicates the mean GM den
inferior temporal gyrus, right middle temporal gyrus, and right superior temporal gyrus.

Phenotype ID Region of interest (Phenotype is defined
as the mean GM density of the ROI)

Amygdala Amygdala
Angular Angular gyrus
AntCingulate Anterior cingulate
Fusiform Fusiform gyrus
Heschl Heschl's gyrus
Hippocampus Hippocampus
InfFrontal_Oper Inferior frontal operculum
InfFrontal_Triang Inferior frontal triangularis
InfOrbFrontal Inferior orbital frontal gyrus
InfParietal Inferior parietal gyrus
InfTemporal Inferior temporal gyrus
Insula Insula
Lingual Lingual gyrus
MedOrbFrontal Medial orbital frontal gyrus
MedSupFrontal Medial superior frontal gyrus
MidCingulate Middle cingulate
MidFrontal Middle frontal gyrus
MidOrbFrontal Middle orbital frontal gyrus

Phenotype ID Regions of interest (phenotype is defined as the av

MeanCing⁎ Anterior cingulate, middle cingulate, and posterior
MeanFrontal⁎ Inferior frontal operculum, inferior orbital frontal g

middle orbital frontal gyrus, superior frontal gyrus,
operculum, and supplementary motor area

MeanLatTemporal⁎ Inferior temporal gyrus, middle temporal gyrus, an
MeanMedTemporal⁎ Amygdala, fusiform gyrus, Heschl's gyrus, hippocam

superior temporal pole
MeanOccipital⁎ Calcarine gyrus, cuneus, inferior occipital gyrus, mi
MeanParietal⁎ Angular gyrus, inferior parietal gyrus, superior pari
MeanTemporal⁎ Amygdala, fusiform gyrus, Heschl's gyrus, hippocam

middle temporal gyrus, middle temporal pole, supe

Please cite this article as: Shen, L., et al., Whole genome association study
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average of two independent smoothed, unmodulated normalized GM
density maps for each participant using SPM5. The MarsBaR region of
interest (ROI) toolbox (Brett et al., 2002; Tzourio-Mazoyer et al.,
2002) as implemented in SPM5 was then used to extract a single
mean GM density value for 86 target regions in MNI space (Table 1) to
be used as target QTs for the imaging genetic analyses. In addition to
the individual MarsBaR ROIs, larger target regions defined by
combining the mean GM density value from a set of MarsBaR ROIs
were used as imaging phenotypes. All individual and combined mean
GM density values are referred to as VBM phenotypes; see Table 1 for a
total list and explanation of the 86 VBM phenotypes.

For automated segmentation and parcellation, FreeSurfer V4 was
employed to automatically label cortical and subcortical tissue classes
using an atlas-based Bayesian segmentation procedure (Dale et al.,
1999; Fischl and Dale, 2000; Fischl et al., 2002, 1999) and to extract
target region volume and cortical thickness, as well as to extract total
intracranial volume (ICV) for all participants. Extracted FreeSurfer
values for two independently processed MP-RAGE images of the same
participant were averaged to create a mean value for volumetric and
cortical thickness measures for all target regions. Mean volumetric
and cortical thickness measures extracted using automated parcella-
tion are referred to as FreeSurfer phenotypes; see Table 2 for a total list
of the 56 FreeSurfer phenotypes defined for selected target regions.

Genome-wide association analysis of imaging phenotypes

APOE genotype
The APOE gene is an important target gene in AD research (Farrer

et al., 1997). However, the two previously identified APOE SNPs
important in AD susceptibility (rs429358, rs7412) were not available
TE
D

as applied for computing voxel-wise GM density values, while the MarsBaR ROI toolbox
lculated. Each of the 43 IDs shown in the table corresponds to two phenotypes: one for
density of the left amygdala. Each regionmarkedwith ⁎ in the table is a combined set of

sity of the right lateral temporal region defined by a set of MarsBaR ROIs, including right

Phenotype ID Region of interest (Phenotype phenotype is
defined as the mean GM density of the ROI)

MidTempPole Middle temporal pole
MidTemporal Middle temporal gyrus
Olfactory Olfactory gyrus
Parahipp Parahippocampal gyrus
PostCingulate Posterior cingulate
Postcentral Postcentral gyrus
Precentral Precentral gyrus
Precuneus Precuneus
Rectus Rectus gyrus
Rolandic_Oper Rolandic operculum
Supfrontal Superior frontal gyrus
SupOrbfrontal Superior orbital frontal gyrus
SupParietal Superior parietal gyrus
SupTempPole Superior temporal pole
SupTemporal Superior temporal gyrus
SuppMotorArea Supplementary motor area
Supramarg Supramarginal gyrus
Thalamus Thalamus

erage GM density of multiple MarsBaR ROIs)

cingulate
yrus, inferior frontal triangularis, medial orbital frontal gyrus, middle frontal gyrus,
medial superior frontal gyrus, superior orbital frontal gyrus, rectus gyrus, rolandic

d superior temporal gyrus
pus, lingual gyrus, olfactory gyrus, parahippocampal gyrus, middle temporal pole, and

ddle occipital gyrus, and superior occipital gyrus
etal gyrus, supramarginal gyrus, and precuneus
pus, lingual gyrus, olfactory gyrus, parahippocampal gyrus, inferior temporal gyrus,
rior temporal pole, and superior temporal gyrus

of brain-wide imaging phenotypes for identifying quantitative trait
oi:10.1016/j.neuroimage.2010.01.042
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Table 2t2:1

FreeSurfer phenotypes defined as volumetric or cortical thickness measures of various
regions of interest (ROIs). FreeSurfer was applied for automated parcellation to extract
volume and cortical thickness values for a total number of 28×2=56 ROIs. Each of the
28 IDs shown in the table corresponds to two phenotypes: one for the left side and the
other for the right side. For example, “LAmygVol” indicates the volume of the left
amygdala, while “RSupTemporal” indicates the (mean) thickness of the right superior
temporal gyrus.

t2:2
t2:3 Phenotype ID Phenotype description

t2:4 AmygVol Volume of amygdala
t2:5 CerebCtx Volume of cerebral cortex
t2:6 CerebWM Volume of cerebral white matter
t2:7 HippVol Volume of hippocampus
t2:8 InfLatVent Volume of inferior lateral ventricle
t2:9 LatVent Volume of lateral ventricle
t2:10 EntCtx Thickness of entorhinal cortex
t2:11 Fusiform Thickness of fusiform gyrus
t2:12 InfParietal Thickness of inferior parietal gyrus
t2:13 InfTemporal Thickness of inferior temporal gyrus
t2:14 MidTemporal Thickness of middle temporal gyrus
t2:15 Parahipp Thickness of parahippocampal gyrus
t2:16 PostCing Thickness of posterior cingulate
t2:17 Postcentral Thickness of postcentral gyrus
t2:18 Precentral Thickness of precentral gyurs
t2:19 Precuneus Thickness of precuneus
t2:20 SupFrontal Thickness of superior frontal gyrus
t2:21 SupParietal Thickness of superior parietal gyurs
t2:22 SupTemporal Thickness of superior temporal gyrus
t2:23 Supramarg Thickness of supramarginal gyrus
t2:24 TemporalPole Thickness of temporal pole
t2:25 MeanCing Mean thickness of caudal anterior cingulate,

isthmus cingulate, posterior cingulate, and
rostral anterior cingulate

t2:26 MeanFront Mean thickness of caudal midfrontal, rostral
midfrontal, superior frontal, lateral orbitofrontal,
and medial orbitofrontal gyri and frontal pole

t2:27 MeanLatTemp Mean thickness of inferior temporal, middle temporal,
and superior temporal gyri

t2:28 MeanMedTemp Mean thickness of fusiform, parahippocampal,
and lingual gyri, temporal pole and transverse
temporal pole

t2:29 MeanPar Mean thickness of inferior and superior parietal gyri,
supramarginal gyrus, and precuneus

t2:30 MeanSensMotor Mean thickness of precentral and postcentral gyri
t2:31 MeanTemp Mean thickness of inferior temporal, middle temporal,

superior temporal, fusiform, parahippocampal, and
lingual gyri, temporal pole and transverse temporal pole
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two APOE SNPs (rs429358, rs7412) using the APOE ε2/ε3/ε4 status
information from the ADNI clinical database for each participant.

Quality control
The original genotype data contained 620,903 markers, including

620,901 genomic markers on the Illumina chip plus 2 APOE SNPs
whose values were obtained from the APOE status data. Only SNP
markers were analyzed in this study. The following quality control
(QC) steps were performed on these genotype data using the PLINK
software package (http://pngu.mgh.harvard.edu/~purcell/plink/),
release v1.06. SNPs were excluded from the imaging genetics
analysis if they could not meet any of the following criteria: (1)
call rate per SNP ≥90%, (2) minor allele frequency (MAF) ≥5%, and
(3) Hardy–Weinberg equilibrium test of p≤10−6 using healthy
control (HC) subjects only. Participants were excluded from the
analysis if any of the following criteria was not satisfied: (1) call rate
per participant ≥90% (1 participant was excluded); (2) gender
check (2 participants were excluded); and (3) identity check (3
sibling pairs were identified with PI_HAT over 0.5; one participant
from each pair was randomly selected and excluded). Population
stratification analysis suggested the advisability of restricting
analyses to non-Hispanic Caucasians (79 participants were excluded
from this report). After the QC procedure, 733 out of 818
Please cite this article as: Shen, L., et al., Whole genome association study
loci in MCI and AD: a study of the ADNI cohort, NeuroImage (2010), d
participants and 530,992 out of 620,903 markers remained in the
analysis and the overall genotyping rate for the remaining dataset
was over 99.5%.
OF

GWAS analyses
One hundred forty-two separate GWAS analyses on 142 selected

imaging phenotypes (86 VBM phenotypes and 56 FreeSurfer
phenotypes) were completed using the quality-controlled SNP data.
All the imaging phenotypes were adjusted for the baseline age,
gender, education, handedness, and baseline intracranial volume
(ICV) using the regression weights derived from the HC participants,
prior to any of the GWAS analyses (Risacher et al., 2009). Using the
PLINK software package (v1.06) with the quantitative trait association
option, each GWAS analysis calculated the main effects of all SNPs on
the target quantitative imaging phenotype. An additive SNP effect was
assumed and the empirical p-values were based on the Wald statistic
(Purcell et al., 2007). Right hippocampal GM density was selected for a
detailed sample analysis of a target QC because it had the largest
number of associations at pb10−6. A Manhattan plot and a quantile–
quantile (Q–Q) plot were used to visualize GWAS results for the right
hippocampal GM density. All association results surviving the
significance threshold of pb10−6 were saved and prepared for
additional pattern analysis.

TE
D
PRSample definition and demographics

The sample employed in the GWAS analyses of FreeSurfer
phenotypes included participants that passed the genotype QC
procedure and FreeSurfer processing. The sample used in the GWAS
analyses of VBM phenotypes included participants that passed the
genotype QC procedure, FreeSurfer processing, and VBM processing.
Demographic information, including baseline age, years of education,
gender distribution, and handedness distribution, was compared
between baseline diagnostic groups for each sample separately using
one-way ANOVAs and chi-squared analyses as applicable in SPSS
(version 16.0.1).
Pattern analyses of GWAS results

To expedite the review of GWAS results and data reduction for
subsequent analyses, we employed heat map and hierarchical
clustering approaches (Eisen et al., 1998; Levenstien et al., 2003;
Sloan et al., submitted for publication) for visualizing associations
between identified SNPs and their associated imaging phenotypes
at various significance levels. Heat maps are colored images
mapping given values (in this study, − log10(p) of the
corresponding association) to coded colors. Generally, heat maps
have dendrograms, representing hierarchical clustering results
along both the x-axis and y-axis (in this study, x: imaging
phenotypes, y: SNPs). R (v.2.9.0) (http://www.r-project.org/), an
open source statistical computing package, was employed to create
the heat maps. Hierarchical clustering was completed using Eucli-
dean distance methods to define dissimilarity between two nodes
and average of distances between all pairs of objects in two clusters to
measure the distance between two clusters. On each heat map,
significant associations between imaging phenotypes and SNPs
were marked with an “x” to facilitate visual evaluation of the
results. The color bar on the left side of the heat map encodes the
chromosome IDs for the corresponding SNPs. In addition to the
heat maps, a summary statistic detailing the number of significant
associations at the pb10−6 level for each imaging phenotype and
SNP was evaluated to help guide the refined analyses. In the
present study, all imaging GWAS results are presented and
analyzed using heat maps and summary statistics.
of brain-wide imaging phenotypes for identifying quantitative trait
oi:10.1016/j.neuroimage.2010.01.042
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Detailed analysis of a target SNP identified by cluster analysis

An in-depth analysis was performed for one of the top SNPs
selected by inspecting the heat maps and summary statistics. The
refined analysis included two steps: (1) a global voxel-based analysis
on the entire brain using VBM and (2) regional analyses of identified
target phenotypes. We included both types of analyses as they
provide complementary information relevant to assessing risk for AD
or disease progression (Risacher et al., 2009; Saykin et al., 2006).

For global analyses, VBM was performed on a voxel-by-voxel basis
using a general linear model (GLM) approach as implemented in SPM5.
After identifying the SNP of interest, a two-way ANOVA assessing the
effects of baseline diagnostic group and SNP genotype value was
performed to compare the smoothed, unmodulated normalized GM
maps to determine any significant effects of diagnosis, SNP genotype,
and SNP-by-diagnosis interactions on global GM density between and
within groups. Contrasts between genotypes were displayed with a
significance threshold of pb0.01 corrected for multiple comparisons
using a false discovery rate (FDR) technique when including the entire
sample. For contrastswithin a single diagnostic group, the pb0.01 (FDR)
threshold was too stringent given the reduced power and no significant
voxels were observed. Therefore, we used a slightly less stringent
significance threshold of pb0.001 (uncorrected for multiple compar-
isons)whenexaminingSNPeffectswithin a diagnostic group, in order to
evaluate the pattern of GM density associated with genotype. A
minimum cluster size (k) of 27 voxels was required for significance in
all comparisons and anexplicit GMmaskwas used to restrict analyses to
GM regions. Age, gender, education, handedness and baseline ICV were
included as covariates in all analyses.

For ROI analyses, a two-way multivariate ANOVA in SPSS (version
16.0.1) was completed to determine the effect of baseline diagnosis
and genotype on bilateral hippocampal and mean medial temporal
lobar GM density. Similar to the VBM analysis, age, gender, education,
handedness, and baseline ICV were included as covariates in all
comparisons. Independent effects of baseline diagnosis and genotype,
as well as the interaction effect of baseline diagnosis×genotype for
each SNP, were assessed for selected imaging variables. All graphs
were created using SigmaPlot (version 10.0).

Results

Sample characteristics after QC

After quality control of the genotyping data including the
exclusion of 79 participants to avoid potential population stratifica-
tion confounds, 733 out of 818 ADNI participants remained in the
present study. Among these 733 participants, 729 sets of scans were
successful in FreeSurfer segmentation and parcellation and were
included in GWAS analyses of FreeSurfer phenotypes (56 volumetric
and cortical thickness values described in Table 2). Seven hundred
fifteen participants had successful VBM processing and were used in
GWAS analyses of VBM phenotypes (86 GM density values described
in Table 1). Table 3 shows the demographics information of the
UNTable 3
Demographic information and total number of participants involved in each analysis. Of 8
consideration of population stratification. Among these 733 participants, 729 subjects suc
analysis of FreeSurfer phenotypes. Of these, 715 subjects had successful VBM processing
information is shown for both groups of participants.

Category FreeSurfer phenotypes (729 subjects)

HC MCI AD

Number of subjects 203 351 175
Gender (M/F) 111/92 229/122 97/78
Baseline age (years; mean±SD) 76.1±5.0 75.1±7.3 75.5±7.6
Education (years; mean±SD) 16.1±2.7 15.7±3.0 14.9±3.0
Handedness (R/L) 188/15 318/33 163/12

Please cite this article as: Shen, L., et al., Whole genome association study
loci in MCI and AD: a study of the ADNI cohort, NeuroImage (2010), d
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sample analyzed for both FreeSurfer and VBM studies. In both
samples, gender and education are significantly different (overall
pb0.05) among baseline diagnostic groups (HC, MCI, AD). In the
subsequent GWAS analyses, baseline age and gender, as well as
education, handedness, and baseline ICV are included as covariates.

GWAS of imaging phenotypes

For convenience, in this paper, an SNP is described by its rs number
togetherwith its respective gene (i.e., the closest gene, as annotated in
Illumina's Human610-Quad SNP list). Shown in Fig. 1 are all the
imaging genetics associations at a significance threshold of pb10−7 (a
typical threshold for genome-wide significance), which are discov-
ered by GWAS analysis of 142 imaging phenotypes (i.e., quantitative
traits, or QTs).

At the pb10−7 significance level, 22 strong SNP-QT associations
(see blocks labeled with “x” in Fig. 1) were identified in the GWAS
analyses, and five SNPs were involved in these associations. As a well-
established AD risk factor (Farrer et al., 1997), the APOE SNP rs429358
confirmed to have multiple associations with both FreeSurfer QTs and
VBM QTs, showing as the most prominent imaging genetics pattern at
the significance level of pb10−7. In addition, associations with
multiple FreeSurfer QTs were identified for rs2075650 (TOMM40),
supporting the recent finding of TOMM40 as a gene adjacent to APOE
and an additional contributor to AD (Osherovich, 2009; Potkin et al.,
2009a). Three additional SNPs were found to have strong associations
with one or more VBM QTs: rs6463843 (NXPH1), rs4692256
(LOC391642), and rs10932886 (EPHA4). Further information about
these SNPs is available in Table 4.

A number of imaging phenotypes were identified to have strong
associations with target SNPs in the GWAS analyses, suggesting that
these values may be sensitive QTs to imaging genetics studies of AD. As
expected, both the left and right amygdalar and hippocampal regions
were found to be strongly associated with rs429358 (APOE) using
volumetric and GM density measures. In addition, rs2075650
(TOMM40) was significantly associated with bilateral hippocampal
volume and left amygdalar volume. Additional imaging phenotypes
found to be sensitive QTs, include (a) volume measures from the right
cerebral cortex and cerebral white matter, (b) cortical thickness mea-
sures from left and right inferior parietal gyri, and right middle tem-
poral gyrus, and (c) GM density measures from the left middle orbital
frontal gyrus, left precuneus, left superior frontal gyrus, and left and
right mean frontal lobe regions (seeMeanFrontal definition in Table 1).

Heat maps of clustered associations at a somewhat less stringent
significance level (pb10−6) are shown in Fig. 2. As expected, more
SNPs and QTs are involved. The top 10 SNPs and their respective genes
ranked by the total number of significant QT associations at pb10−6

are shown in Table 4. With more SNPs and QTs available in the heat
maps, interesting clustering patterns in both the imaging and genetics
dimensions were revealed by examining the corresponding dendro-
grams (i.e., hierarchical clustering results). In the imaging dimension
(x-axis), many pairs of left and right measures of the same structure
were clustered together, supporting the symmetric relationship
18 ADNI participants, 733 remained after quality control of the genotyping data and
ceeded in FreeSurfer segmentation and parcellation and were involved in the GWAS
and were involved in the GWAS analysis of VBM phenotypes. Basic demographics

VBM phenotypes (715 subjects)

p-value HC MCI AD p-value

– 203 346 166 –

0.019 111/92 225/121 90/76 0.017
0.283 76.1±5.0 75.1±7.4 75.5±7.6 0.285
0.0004 16.1±2.7 15.7±3.0 14.9±3.0 0.0003
0.53 188/15 314/32 157/9 0.31

of brain-wide imaging phenotypes for identifying quantitative trait
oi:10.1016/j.neuroimage.2010.01.042
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Fig. 1. Heat maps of SNP associations with quantitative traits (QTs) at the significance level of pb10−7. GWAS results at a statistical threshold of pb10−7 using QTs derived from
FreeSurfer (top) and VBM/MarSBaR (bottom) are shown. − log10(p-values) from each GWAS are color-mapped and displayed in the heat maps. Heat map blocks labeled with “x”
reach the significance level of pb10−7. Only top SNPs and QTs are included in the heat maps, and so each row (SNP) and column (QT) has at least one “x” block. Dendrograms derived
from hierarchical clustering are plotted for both SNPs and QTs. The color bar on the left side of the heat map codes the chromosome IDs for the corresponding SNPs. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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UNbetween these phenotypes and genetic variation. In addition, regional
similarity was also detected including a prominent pattern of multiple
orbital frontal measures clustered together in Fig. 2b. In the genomic
dimension (y-axis), three SNPs from LOC391642 were grouped
together in Fig. 2b, suggesting an increased likelihood of linkage
disequilibrium (LD) effects.

Refined analysis for a sample target QT

Subsequent analyses focused on a target QT and a target SNP
selected from heat maps in Fig. 2. Shown in Fig. 3 are the Manhattan
and Q–Q plots of the GWAS for the target QT, right hippocampal GM
Please cite this article as: Shen, L., et al., Whole genome association study
loci in MCI and AD: a study of the ADNI cohort, NeuroImage (2010), d
density (RHippocampus in Fig. 2b). In the Q–Q plot, for most of the p-
values, the observed p-values from GWAS are almost the same as the
expected p-values from the null hypothesis. There was little or no
evidence of systematic bias, which could be caused by factors such as a
strong population substructure and genotyping artifacts. The p-values
in the upper tail of the distribution do show a significant deviation
suggesting strong associations between these SNPs and the QT.

Refined analysis for a sample target SNP

A target SNP, rs6463843 (NXPH1), was selected for detailed
imaging analyses since it was the only SNP strongly associated with
of brain-wide imaging phenotypes for identifying quantitative trait
oi:10.1016/j.neuroimage.2010.01.042
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Table 4t4:1

Top quantitative trait (QT) loci ranked by the total number of associations at the significance level of pb10−6. Relevant information about top ranked SNPs and their respective genes
(i.e., the closet gene, as annotated in Illumina's Human610-Quad SNP list (except APOE information extracted from dbSNP)) is shown in this table, including SNP, chromosome
(CHR), coordinate (Build 36.2), gene, location, and position. In addition, the number of QTs that are associated with each SNP at the significance level of pb10−6 is also shown. The
SNPs are ordered according to the last column.

t4:2
t4:3 SNP CHR Coordinate Gene Location Position Number of QT associations

t4:4 VBM FreeSurfer Total

t4:5 rs10932886 2 221428332 EPHA4 Flanking_3UTR −562,659 27 0 27
t4:6 rs429358 19 50103781 APOE Coding Exon 4 4 15 19
t4:7 rs7610017 3 190826118 TP63 Flanking_5UTR −5792 19 0 19
t4:8 rs6463843 7 8805242 NXPH1 Flanking_3UTR −46124 9 0 9
t4:9 rs2075650 19 50087459 TOMM40 Intron −31 0 5 5
t4:10 rs16912145 10 59752674 UBE2D1 Flanking_5UTR −12071 4 0 4
t4:11 rs12531488 7 144523019 LOC643308 Flanking_5UTR −154052 3 0 3
t4:12 rs7526034 1 63359561 LOC199897 Flanking_5UTR −103696 0 2 2
t4:13 rs7647307 3 69705878 LOC642487 Flanking_5UTR −31337 0 2 2
t4:14 rs4692256 4 27353816 LOC391642 Flanking_3UTR −156945 1 0 1
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both left and right hippocampi other than rs429358 (APOE) and
rs2075650 (TOMM40). The results of a two-way ANOVA using VBM to
compare the effects of baseline diagnostics group and rs6463843
(NXPH1) genotype on global GM density are shown in Fig. 4. After
evaluating hippocampal GM density group means for each diagnosis-
genotype group, we chose to contrast GG vs. TT (GGNTT) using all
participants (n=715; 166 AD (44 TT, 78 GT, 44 GG); 346 MCI (82 TT,
170 GT, 94 GG); 203 HC (35 TT, 105 GT, 63 GG)). As shown in Fig. 4a,
TT participants had significantly reduced global GM density through-
out the brain relative to GG participants (pb0.01 (FDR), k=27).
Maximal differences between groups were found in a number of
regions known to be associated with AD, including the medial
temporal lobe (−36, −30, −17; T=5.20) and frontal (19, 56,
−15; T=5.56), parietal (26, −59, 67; T=5.71) and temporal (−59,
2, −30; T=4.81) lobe cortical surfaces. In order to determine
whether a particular diagnostic group was responsible for the effects
seen in the full sample contrast of GGNTT, we evaluated the same
comparison within each baseline diagnostic group (Fig. 4b; AD, MCI,
HC). The pattern of significant voxels for GGNTT was largest in the
AD group, with highly significant clusters in the right hippocampus
(31, −26, −15; T=5.34), left medial temporal lobe (−25, −32,
−7; T=4.37), and frontal lobe (−35, 49, −13; T=4.33). MCI and
HC groups also showed significant voxels in the contrast of GGNTT,
with maximum voxels found in the inferior frontal lobe (45, 25,−13;
T=3.82) and middle frontal lobe (−25, 6, 62; T=4.58), respectively.
The AD panel in Fig. 4b showed more prominent patterns, while the
MCI and HC panels appeared less structured. This suggested a
possible SNP-by-diagnosis interaction effect on brain structure,
which is examined below at a more detailed level for several
candidate imaging phenotypes. Furthermore, the inclusion of APOE
genotype as a covariate did not significantly alter these effects (data
not shown).

Based on the heat map and VBM results, four GM density
measures were further evaluated as phenotypes for additional
associations with rs6463843 (NXPH1). As shown in Fig. 5, expected
baseline diagnostic differences in left (Fig. 5a; F(7,708)=79.4,
pb0.001) and right (Fig. 5b; F(7,708)=78.4, pb0.001) hippocampal
GM density, as well as left (Fig. 5c; F(7,708)=60.3, pb0.001) and
right (Fig. 5d; F(7,708)=59.4, pb0.001) mean medial temporal lobe
GM density were found. Pairwise comparisons indicated that AD
participants had significantly reduced hippocampal and mean
medial temporal lobe GM density relative to both MCI and HC
participants (all pb0.001). MCI participants also showed a signifi-
cantly reduced GM density in all these regions relative to HCs
(pb0.001). The main effect of genotype across all participants was
also significant for left and right hippocampal GM density (left, F
(7,708)=10.4; right, F(7,708)=9.9, both pb0.001) and left and
right mean medial temporal lobe GM density (left, F(7,708)=7.9;
Please cite this article as: Shen, L., et al., Whole genome association study
loci in MCI and AD: a study of the ADNI cohort, NeuroImage (2010), d
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significantly reduced left and right hippocampal and mean medial
temporal lobar GM density in participants with a TT genotype
relative to those with a GG genotype in the rs6463843 (NXPH1) SNP
(pb0.01). In addition, participants with the TT genotype had
significantly reduced left and right mean medial temporal lobe GM
density relative to TG heterozygotes (pb0.01). The interaction effect
of baseline diagnosis and rs6463843 genotype was also significant
for right hippocampal GM density (pb0.05), but not for the other
three regions, which suggested that AD patients with TT genotype
were particularly vulnerable to increased GM density loss in right
hippocampus.

Discussion

Methodological overview

Employing a whole genome and entire brain strategy, we
presented an imaging genetics methodological framework for
systematically identifying associations between genotypes and
imaging phenotypes, and demonstrated the utility of this method
using the ADNI cohort. Our imaging genetics method can be broadly
summarized as the following four steps after quality control and
preprocessing: (1) imaging phenotype definition, (2) GWAS of image
phenotypes, (3) cluster and heat map analysis of imaging GWAS
results, and (4) refined statistical modeling.

Imaging phenotype definition
Eight-six GM density ROI measures and 56 volume and cortical

thickness ROI measures were extracted, using VBM and FreeSurfer
methods respectively, and analyzed as image phenotypes in
independent GWAS analyses. This approach is complementary to
another recently proposed imaging genetics analysis method, voxel-
wise GWAS (vGWAS) (Stein et al., submitted for publication). The
vGWAS technique explores SNP associations with all voxels in the
image space. Our study is ROI-based, analyzing fewer but anato-
mically meaningful imaging phenotypes and thus, requires less
computational resources. In addition, we used multiple techniques
to define imaging phenotypes. Among the top 5 SNPs identified
as part of the present study (Table 4), rs10932886 (EPHA4),
rs7610017 (TP63) and rs6463843 (NXPH1) are primarily associated
with VBM QTs, rs2075650 (TOMM40) is associated with FreeSurfer
QTs, and rs429358 (APOE) is associated with ROIs extracted
using both techniques. These results suggest that the VBM and
FreeSurfer QTs are not equally sensitive to the same genetic
markers and consequently may provide complementary informa-
tion. The VBM measures we employed are not modulated (Good
et al., 2001) and therefore measure GM densities (Ashburner and
of brain-wide imaging phenotypes for identifying quantitative trait
oi:10.1016/j.neuroimage.2010.01.042
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Fig. 2. Heat maps of SNP associations with quantitative traits (QTs) at the significance level of pb10−6. GWAS results at a statistical threshold of pb10−6 using QTs derived from
FreeSurfer (top) and VBM/MarSBaR (bottom) are shown. − log10(p-values) from each GWAS are color-mapped and displayed in the heat maps. Heat map blocks labeled with “x”
reach the significance level of pb10−6. Only top SNPs and QTs are included in the heat maps, and so each row (SNP) and column (QT) has at least one “x” block. Dendrograms derived
from hierarchical clustering are plotted for both SNPs and QTs. The color bar on the left side of the heat map codes the chromosome IDs for the corresponding SNPs. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

8 L. Shen et al. / NeuroImage xxx (2010) xxx–xxx

ARTICLE IN PRESS
Friston, 2000), which are different from the volume and thickness
measures that FreeSurfer generates for analysis. The comple-
mentary nature of GM density, volumetric, and cortical thickness
ROIs in assessing of early AD, MCI, and pre-MCI samples is con-
sistent with our recent findings examining ADNI baseline MRI data
(Risacher et al., 2009) as well as an independent cohort (Saykin
et al., 2006).
Please cite this article as: Shen, L., et al., Whole genome association study
loci in MCI and AD: a study of the ADNI cohort, NeuroImage (2010), d
GWAS of image phenotypes
Following quality control of the genotyping data, genome-wide

association studies were conducted on each of the 142 imaging
phenotypes. The entire set of the GWAS analyses was performed and
completed on a 112-node parallel computing environment within 20
min, suggesting an excellent potential for larger scale future
extensions. One extension could be to investigate more sophisticated
of brain-wide imaging phenotypes for identifying quantitative trait
oi:10.1016/j.neuroimage.2010.01.042
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Fig. 3.Manhattan and Q–Q plots of genome-wide association study (GWAS) of an example quantitative trait (QT). The QT examined in this analysis is the mean GM density of the
right hippocampus (i.e., VBM phenotype RHippocampus, see Table 1) which was calculated using VBM/MarsBaR and adjusted for age, gender, education, handedness and ICV.
Shown on the top panel is the Manhattan plot of the p-values (− log10(observed p-value)) from GWAS analysis of the QT. The horizontal lines display the cutoffs for two
significant levels: blue line for pb10−6, and red line for pb10−7. Shown on the bottom panel is the quantile–quantile (Q–Q) plot of the distribution of the observed p-values
(− log10(observed p-value)) in this sample versus the expected p-values (− log10(expected p-value)) under the null hypothesis of no association. Genomic inflation factor
(based on median chi-squared) is 1.01667. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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interactions). Another extension could be to involve more imaging
phenotypes from other imaging modalities or longitudinal data.

Cluster and heat map analysis of imaging GWAS results
Heat maps and hierarchical clustering have been used frequently

for grouping results in gene expression analysis for pattern discovery
(Eisen et al., 1998; Levenstien et al., 2003). In imaging genetics, heat
maps can be equally useful for performing relevant pattern analysis
tasks thanks to the rich information contained within the maps and
their effective mechanism to organize and visualize complicated
imaging GWAS results. A straightforward use of a heat map is to select
target QTs, SNPs, or associations for further analyses. Due to its
intuitive representation, some obvious patterns (e.g., the APOE SNP in
Please cite this article as: Shen, L., et al., Whole genome association study
loci in MCI and AD: a study of the ADNI cohort, NeuroImage (2010), d
Fig. 1) can be easily identified. For less obvious cases, other criteria
could be used, for example, the selection of rs6463843 (NXPH1)
because of its associations with multiple candidate phenotypic
regions (i.e., hippocampus) affected by AD (Fig. 2b). In addition, a
heat map can also be used to discover new patterns or structures. All
the QTs and SNPs are hierarchically clustered as dendrograms on the
x-axis and y-axis, respectively. In the genomic domain, for those SNP
clusters that do not match the existing LD relationships, the
dendrogram provides the ability to identify novel inter-SNP structures
(e.g., Sloan et al., submitted for publication). In the imaging domain,
for those phenotype clusters that do not follow a regional or
bilaterally symmetric pattern, there might be an opportunity to
identify an underlying brain connectivity pattern associated with a
genetic variation.
of brain-wide imaging phenotypes for identifying quantitative trait
oi:10.1016/j.neuroimage.2010.01.042

http://dx.doi.org/10.1016/j.neuroimage.2010.01.042


CO
RR

EC
TE
D
PR

OO
F

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

Fig. 4. VBM genetics analysis for rs6463843 (NXPH1). A two-way ANOVA was performed on mean GM density maps to compare rs6463843 SNP genotype and baseline diagnostic
groupwithin the ADNI cohort. Analysis of the contrast of two genotype groups, GGNTT, is shown (n=715; 166 AD (44 TT, 78 GT, 44 GG); 346MCI (82 TT, 170 GT, 94 GG); 203 HC (35
TT, 105 GT, 63 GG)). Age, gender, education, handedness, and baseline ICV are included as covariates in all comparisons. Shown in the top panel (a) are the results of comparison
involving all 715 subjects (i.e., across all the diagnostic groups), which are displayed at a threshold of pb0.01 (corrected with FDR) with minimum cluster size (k)=27. Shown in the
bottom panel (b) are the results of comparisons within each of the three baseline diagnostic groups (AD, MCI, and HC), which are displayed at a threshold of pb0.001 (uncorrected),
with minimum cluster size (k)=27.

10 L. Shen et al. / NeuroImage xxx (2010) xxx–xxx

ARTICLE IN PRESS
UNRefined statistical modeling
In this paper, each heat map includes all the strong associations at

a given significance threshold level, and can be used to guide further
analyses using refined statistical models (e.g., involving diagnosis and
other biomarkers, addressing interaction effects, etc.). These analyses
can be performed using different strategies as follows: (1) select a
target phenotype from the heat map and examine its whole genome
mapping (e.g., Fig. 3); (2) pick a target SNP from a heat map and
perform detailed image analysis (e.g., Fig. 4); and (3) choose a target
SNP-QT association based on a heat map and/or an imaging analysis
results, and perform a refined statistical modeling (e.g., Fig. 5). In this
Please cite this article as: Shen, L., et al., Whole genome association study
loci in MCI and AD: a study of the ADNI cohort, NeuroImage (2010), d
study, we conducted sample analyses for each of the above cases. The
ultimate goal of these types of analyses is to identify genetic markers
affecting brain structure and function, how these imaging and genetic
markers interact with each other, as well as with diagnosis and/or
other clinically and biologically relevant measures, and to gain a
better understanding of disease risk and pathophysiology.

Imaging and genetics findings

The APOE SNP rs429358 and TOMM40 SNP rs2075650 were
confirmed to be top markers affecting multiple brain structures in a
of brain-wide imaging phenotypes for identifying quantitative trait
oi:10.1016/j.neuroimage.2010.01.042
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2009; Potkin et al., 2009a). Other SNPs, including rs10932886 (EPHA4),
rs7610017 (TP63) and rs6463843 (NXPH1), were also among the top
markers influencing brain structures in our analysis (Table 4). These
SNPs and the genes in which they are found or flank have a number of
important functions and potential pathways through which they may
influence the pathophysiological processes underlying AD.

The EPHA4 [EPH receptor A4] gene belongs to the ephrin receptor
subfamily of the protein-tyrosine kinase family (Fox et al., 1995). The
interaction between neuronal EphA4 and glial ephrin-A3was found to
bidirectionally control synapse morphology and glial glutamate
transport, which may ultimately regulate hippocampal function
(Carmona et al., 2009). In addition, EphA4 and EphB2 receptors
were reported to be reduced in the hippocampus before the
development of impaired object recognition and spatial memory in
transgenic mouse models of AD (Simon et al., 2009). The TP63 [Tumor
protein 63] gene encodes a member of the p53 family of transcription
factors (Yang et al., 1998). A literature search did not locate any
articles associating TP63 with AD, cognitive impairment or neurode-
generation. Additional imaging genetics analyses on both rs10932886
(EPHA4) and rs7610017 (TP63) appear warranted for future study.

The NXPH1 [Neurexophilin 1] gene is a member of the neurex-
ophilin family and encodes a secreted proteinwhich features a variable
N-terminal domain, a highly conserved,N-glycosylated central domain,
a short linker region, and a cysteine-rich C-terminal domain. This
protein forms a very tight complex with alpha neurexins, a group of
proteins that promote adhesion between dendrites and axons (Missler
Please cite this article as: Shen, L., et al., Whole genome association study
loci in MCI and AD: a study of the ADNI cohort, NeuroImage (2010), d
and Sudhof, 1998). This gene has previously been implicated as a
candidate gene for neuroticism (van den Oord et al., 2008). In the
present study, a VBM analysis of rs6463843 (NXPH1) revealed
significantly reduced global and regional GM density in participants
with the TTgenotype relative to thosewith theGGgenotype. Additional
analyses indicated an interaction between rs6463843 (NXPH1) and
baseline diagnostic group in which AD patients homozygous for the T
allele were differentially vulnerable to decreased GM density in the
right hippocampus, a finding presumably reflecting greater atrophy
associated with this genotype in patients with AD.

Heat maps of imaging genetics associations at two significance
threshold levels (pb10−7 and pb10−6) were also reported. At the
conventional pb10−7 significance threshold, measures of hippocam-
pal and amygdalar GM density and volume were strongly associated
with the APOE and TOMM40 SNPs. Ten additional imaging phenotypes
were strongly associated with at least one of the top SNPs (Fig. 1). We
also examined a somewhat less stringent threshold (pb10−6) in order
to identify additional SNP and imaging QT associations, as well as to
examine patterns of genotype and phenotype clustering. SNPs
associated with multiple unrelated or loosely related imaging
phenotypes may represent an interesting genetic marker affecting
overall brain structure or neurodegeneration. In addition, imaging
variables associated with a number of SNPs from multiple genes may
be particularly sensitive phenotypic markers for examining disease
associated genetic variation. Therefore, heat maps at multiple
statistical thresholds are useful in identifying candidate SNPs and
imaging phenotypes warranting further investigation.
of brain-wide imaging phenotypes for identifying quantitative trait
oi:10.1016/j.neuroimage.2010.01.042
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Limitations and future directions

The majority of analyses presented in this study focused on the
extraction and evaluation of imaging phenotypes and the relationship
of genetic variation to these phenotypes. However, we also included a
limited assessment of the effects of baseline diagnostic group and the
interaction effect of SNP and diagnosis in the analysis of candidate
SNPs and phenotypes. Future studies could incorporate additional
variables (e.g., clinical measures, other types of imaging and
biomarkers) in the GWAS design to examine their effects and
interactions with SNPs and/or target imaging phenotypes. The
present analysis did not address epistasis or gene–gene interactions,
a potentially very important topic. Future analyses should include
models that incorporate epistatic interactions which are likely to be
important for understanding susceptibility and protective factors in
AD and other complex diseases.

Although we employed reasonably stringent thresholds for
assessing genome-wide significance, a large number of ROIs represent
a multiple comparison problem. The issue of determining the proper
statistical threshold for a whole genome and whole brain search for
associations is a challenging area for investigation (Nichols and
Holmes, 2002; Nichols and Inkster, 2009; Stein et al., submitted for
publication). The issue is complicated by the fact that variables within
both the genomic and neuroimaging dimensions are non-indepen-
dent due to LD and spatial autocorrelation, respectively. The
determination of the effective number of independent statistical
tests under these conditions is an area of investigation. Models for the
joint distribution of both dimensions under the null hypothesis
require development and validation.

Replication of current and future GWAS results in independent
samples will remain of critical importance for confirmation. Although
our follow-up analyses examine additional statistics at a more
detailed level for yielding additional insights, these statistics are
non-independent of the statistics used to select candidate ROIs and
candidate associations. Given the recent interest in the non-
independent analysis issue (e.g., Kriegeskorte et al., 2009), indepen-
dent datasets for replication will be important for future studies to
confirm the findings. For the current ADNI sample, given its modest
size, we were unable to use one half of the data for hypothesis
generation and the other half for confirmation, since one half of the
data (i.e., n=367 in this study) cannot provide sufficient power to
detect moderate/small genetic effects (Potkin et al., 2009b). With
additional replication and extension opportunities under develop-
ment, we anticipate that there will be ample statistical power and the
ability to replicate potentially important findings in multiple
independent data sets in the future.

At present there are few opportunities for replication of imaging
genetics results such as those emerging from ADNI given the unique
nature of this multi-dimensional data set. Fortunately, a worldwide
ADNI consortium is actively being developed and large scale
international data sets are likely to become available in the next few
years that can provide adequate replication samples. In addition, the
new NIH sponsored AD Genetics Consortium (ADGC) is assembling
large meta-analytic databases of GWAS results that can provide
confirmation of novel findings. Finally, the AlzGene meta-analytic
database (www.alzgene.org) of candidate genes for AD, curated by
Lars Bertram and colleagues (Bertram et al., 2007), provides a
regularly updated source for determining the replication and
validation status of AD genes.

The AAL atlas (Tzourio-Mazoyer et al., 2002) used to create the
ROIs for the VBM analysis in this study is based on a single individual.
To take anatomical variability into account, an important future
direction will be to employ a probabilistic atlas, e.g., the Harvard-
Oxford atlas (distributed with the FSL software package; http://fsl.
fmrib.ox.ac.uk/fsl/), or the LONI probabilistic brain atlas (Shattuck et
al., 2008). The most appropriate method to derive a GM-based
Please cite this article as: Shen, L., et al., Whole genome association study
loci in MCI and AD: a study of the ADNI cohort, NeuroImage (2010), d
summary statistic (e.g., density or volume) for a probabilistic ROI is a
topic warranting investigation.

Despite the limitations and challenges, the encouraging experi-
mental results obtained using the proposed analytic framework
appear to have substantial potential for enabling the discovery of
imaging genetics associations and for localizing candidate imaging
and genomic regions for refined statistical modeling and further
characterization. Ultimately, imaging genetics holds the promise of
providing important clues to pathophysiology that could inform
development of methods for earlier detection and therapeutic
intervention.
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